“两位数乘两位数(不进位)”教学反思

作者:佚名 资料来源:网络 点击数:

“两位数乘两位数(不进位)”教学反思

文章来
源莲 山课件 w ww.5 Y
K J.cOm


  本节课是在学生学习了笔算多位数乘一位数的基础上进行教学的。教学不进位的笔算乘法,重点是教学乘的顺序及各部分积的书写位置,重点帮助学生理解笔算的算理,突出各部分积的实际含义。在本节课教学中,我主要从以下几方面做起;
  一、让学生经历探索计算方法的过程,培养几何直观。
  让学生经历知识的形成过程,是新课程倡导的重要改革理念之一。我在教学两位数乘两位数不进位的笔算中,首先让学生尝试用已有的知识解决新问题,并要求学生用点子图把自己的方法表示出来,让学生经历用图示表征解释算法的过程;然后在去全班交流展示多种解决问题的方法,并通过学生的汇报使学生明确如何划分点子图、算式表征了哪种计算方法,沟通图形表征、算式表征与计算方法之间的联系;最后,在理解竖式计算的算理时,让学生再次利用点子图,表示出竖式计算中每一步的结果,进而更好地理解其含义,掌握好算法。
  借助点子图,在加深学生对计算方法理解的同时,使学生逐步学会借助几何直观去解决问题,去表达和交流,有效促进学生的全面发展。
  二、处理好算法多样化与优化的关系。
  在学生探索14×12=?时,学生出现了多种算法:(1)14×10=140  14×2=28   140+28=168  (2)14×2×6=168   (3)14×4×3=168   (4)12×7×2=168    (5)12×10=120  12×4=48  120+48=168
  (6)   14×9=126  14×3=42   126+42=168 ……在学生交流多种多种算法时,让学生在感受算法多样化的同时,应充分让学生通过对不同计算方法和点子图的比较、归纳和分类,体验方法的异同,掌握解题策略。教师发挥引导作用“这多种方法,都体现了相同的解题思路“先分后合”。师追问:先分后合的解题思路有什么优点呢?学生体会后说“这些方法都是先分后合,分开以后,数变小了,就会算了。分了以后就把新知识转化为旧知识来解答了。”这样在比较中,培养学生的分析能力和优化意识。
  三、注意培养良好的学习习惯。
  学生在计算时,容易产生一些错误。例如:只把相同数位上的数相乘,漏乘某一位;积的位置对错位;出现相加的错误等等。如果不及时纠正,就会产生不良的学习习惯。所以在学生计算中一定严格要求,书写工整,计算细心,认真审题的良好学习习惯。

 

文章来
源莲 山课件 w ww.5 Y
K J.cOm